If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-135=0
a = 2; b = 1; c = -135;
Δ = b2-4ac
Δ = 12-4·2·(-135)
Δ = 1081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1081}}{2*2}=\frac{-1-\sqrt{1081}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1081}}{2*2}=\frac{-1+\sqrt{1081}}{4} $
| 4m-6m+12=-3m | | (x-1)(2x+5)=(x-1)(4-3x) | | 3x^2-2x-6x=0 | | x-7x=-30 | | 3x3=-13 | | 4,8=3x | | -q+1=1+10q | | r+8r=-360 | | -8-k=4+7k | | 2(c-17)=-5 | | -9+2+5n=-6 | | 22-5q=-2q+8q | | 2(f+2)=5-3f | | 36=2r+10 | | -m+1=1+5m | | (4x-10)(20+5x)=0 | | -x+6-2x=-9 | | p+4=24-3p | | 23n+73n=192 | | 12a+3=15a+(2)2 | | s-11s=-70 | | 590x+825=90x-175 | | 12a+3=15a+(2)2/4 | | 15y-117+2y=36 | | 10x+35=5x | | 150+25x=-75x-450 | | -x+1+5x=-27 | | -x+1+5x=-28 | | x+1+5x=-27 | | 8+4x-10x=5-10x+5 | | -1+1+5x=-28 | | 3x-9=90-5+10x |